If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+15x=18
We move all terms to the left:
4x^2+15x-(18)=0
a = 4; b = 15; c = -18;
Δ = b2-4ac
Δ = 152-4·4·(-18)
Δ = 513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{513}=\sqrt{9*57}=\sqrt{9}*\sqrt{57}=3\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{57}}{2*4}=\frac{-15-3\sqrt{57}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{57}}{2*4}=\frac{-15+3\sqrt{57}}{8} $
| 24-3x=-7x=4 | | 8x-13=30 | | x+3+4x-18=180 | | -15=3(c-2)=-3 | | 1=0(4)+b | | 45+18x=21x | | 8x-18=80 | | 4y-9+85=180 | | 3x0-2=-29 | | 5y-2-10=-(y-7)+10 | | x/2+x/3=25/3 | | 85=35^x | | (2/5x)-8=20+(3/4x) | | 3x-(5x-4)=0 | | 0.4x+5=-1 | | -6(-n+4)=6n-21 | | 16r+-4r-13r=10 | | -12x+1=-80 | | 44=-4+8v | | y^2+5y-182=0 | | 3x+7x+1=2(5x+)+2 | | 59(1+c)=6(2+c) | | -4=g/8-19 | | 0.5(6p-4)=7 | | 11t-4t+4t-4t+2t=9 | | -3.99=6.4x-0.7x | | 10-8m=5(-7m+2) | | k/6.2=2.5 | | 8x+4x+34+5x+34=85 | | x=-4+23/42 | | n2+10n-11=0 | | 11s+16s+-11s-17s=12 |